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Subdiffusion of mixed origins: When ergodicity and nonergodicity coexist
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Single particle trajectories are investigated assuming the coexistence of two subdiffusive processes: diffusion
on a fractal structure modeling spatial constraints on motion and heavy-tailed continuous time random walks
representing energetic or chemical traps. The particles’ mean squared displacement is found to depend on the
way the mean is taken: temporal averaging over single-particle trajectories differs from averaging over an
ensemble of particles. This is shown to stem from subordinating an ergodic anomalous process to a nonergodic
one. The result is easily generalized to the subordination of any other ergodic process (i.e., fractional Brownian
motion) to a nonergodic one. For certain parameters the ergodic diffusion on the underlying fractal structure
dominates the transport yet displaying ergodicity breaking and aging.
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Bulk measurements of particles’ movement do not always
give a detailed enough picture of the underlying physical
mechanisms. Widely used methods such as fluorescence cor-
relation spectroscopy and fluorescence recovery after pho-
tobleaching reveal only apparent values of the diffusion co-
efficients. Single-particle tracking (SPT) measurements
provide better insight into the movement properties of par-
ticles by analyzing individual trajectories [1]. Usually ana-
lyzed is the mean-squared displacement (MSD) of the par-
ticle [1],

(P))y=K,, (1)

where a linear dependence, i.e., y=1, is considered a finger-
print of normal diffusion. Any other value of y corresponds
to anomalous diffusion. Here we focus on the case of sub-
diffusion, 0 < y<1, which is widespread in physical and bio-
logical systems [1-6]. A question arises regarding the nature
of the average in Eq. (1). This can be interpreted either as an
ensemble average ( ),,, OVEr many trajectories, or as a time
average ( )7, i.e., a moving average over a single trajectory of
time length 7,

T-7
Con=-t | atren—0r. @)
TJo

When using SPT one is usually limited to a relatively
small number of trajectories, naturally leading to the choice
of temporal rather than ensemble averaging. The two are
equal if the underlying mechanism of motion is ergodic. An
erroneous assumption that all physical processes are ergodic,
namely that the two averages always coincide, might give
rise to misleading results. Understanding ergodicity of differ-
ent transport mechanisms is therefore essential.

Subdiffusive motion can appear due to geometric [7]
and/or energetic disorder [8-10]. An example is the synergy
of geometrical restrictions modeled by fractals (percolation
cluster and Sierpinski gasket) and of “chemical” residence
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times represented by continuous time random walks
(CTRWs) with heavy tails, each leading to subdiffusion. In
biological cells the motion of proteins can be hindered either
by molecular crowding (geometric restraints modeled by
fractals) or by chemical binding [3,4,6] (residence times rep-
resented by CTRWs with heavy tails). Essentially, both
mechanisms can coexist. In this Rapid Communication we
consider the synergy of a nonergodic process (heavy-tailed
CTRW) on a fractal and discuss the properties of the MSD as
obtained via ensemble and time averages.

We start with random walks on fractal structures. We fol-
low numerically the trajectories of a walker on deterministic
(Sierpinski gasket) and statistical (percolation cluster at criti-
cality) fractals. In both cases a simple random walk was
considered: every time unit the walker makes exactly one
step to one of the nearest neighboring sites of the structure.
Thus, the time 7 is essentially equivalent to the number of
steps n of the walker. The particles” MSD was examined by
performing ensemble and temporal averaging and was found
to follow

(F(1))ens = (r(1))p = K gnP = K gtP, 3)

where K is the generalized diffusion constant with units of
length?/timeP. The two averages are equal, displaying ergod-
icity, as shown in Fig. 1. The theoretical value of 8 on a
percolation cluster is 0.697 [7], the ensemble average pro-
duces 0.692 and the temporal average gives 0.697. The dif-
fusion constant Kz is 1.555 from the ensemble average and
1.553 from the temporal. The theoretical value of B for a
random walk on the Sierpinski gasket is 0.861 [7]. The nu-
merical value obtained through the ensemble average is
0.855 while temporal averaging results in 0.880. The diffu-
sion constant Kg is 0.835 from the ensemble average and
0.950 from the temporal. The larger discrepancy in the case
of the Sierpinski gasket originates from its regularity which
introduces hierarchical oscillations and requires averaging
over extremely large samples.

CTRW is generally characterized by the distributions of
step sizes and waiting times. Waiting-time and step-size dis-
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FIG. 1. (Color online) Ensemble and temporal averaging of
MSD of diffusion on a percolation cluster at criticality. The MSDs
are plotted on a log-log scale, where the slope is equivalent to the
time exponent S. The plots of the ensemble and the temporal aver-
aging coincide displaying ergodicity. The percolation cluster was
generated using site percolation on a square lattice of size 250
X 250, with periodic boundary conditions, at critical concentration
p.=0.592 746. Note that due to the overlap of the curves it is dif-
ficult to distinguish between the ensemble and temporal averages
plots. The theoretical slope with 8=0.697 appears as a guide.

tributions with finite mean and variance correspondingly lead
to normal diffusion. A heavy-tailed CTRW refers to a power-
law probability density function (PDF) of waiting times with
a diverging first moment [1,2],

4.5 T T T T

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 81, 010101(R) (2010)

o

¢(¢)~t%, 0<a<l. )
Space and time decoupled CTRW with such a waiting time
PDF leads to subdiffusion, namely, (r*(t)),,,=K,t% if the
variance of the step size exists.

It has been shown [11-13] that this heavy-tailed CTRW
exhibits nonergodicity: the ensemble MSD displays a subdif-
fusive behavior (x*()),,, > t* while the temporal MSD is lin-
ear in time (x*());o ¢, mimicking normal diffusion. It should
be noted that the prefactor of ¢ (effective diffusion coeffi-
cient) in the temporal MSD fluctuates strongly over different
trajectories. One therefore applies an additional ensemble av-
erage to this temporal average determining the mean diffu-
sion coefficient K,. This one was found to depend on the
exponent « and on the length of the trajectory T, K,(T)
=AT* ' [12,13] so that

<<r2(T)>T>ens =ATa_IT' (5)

These two examples (fractals and CTRW) correspond to two
typical sources of subdiffusion as caused by geometrical and
energetic disorder.

Let us now combine these processes and consider heavy-
tailed CTRWs on fractal structures. Such a CTRW on a Si-
erpinski gasket is illustrated in Fig. 2, where the sum of the
random walker’s coordinates, x+Yy, is plotted as a function of
time to elucidate the sequence of steps. The long waiting
times are clearly observed. The ensemble average in this case
is obtained by generating a time subordination of the regular
random walk on a fractal structure [14,15]. As in Eq. (3), the
MSD of a random walker on a fractal structure is given by
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FIG. 2. (Color online) Heavy tailed CTRW on a Sierpinski gasket. Plot of the sum of coordinates of the RWs position x+y as a function
of time. In the inset a schematic representation of the process is shown, where circles represent different waiting times. In our simulations

we used a Sierpinski gasket of 11th generation in two dimensions.
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FIG. 3. (Color online) A log-log plot of the temporal and en-
semble MSDs of a CTRW (a=0.3) on a percolation cluster at criti-
cality. The distribution of diffusion constants is apparent for the
temporal MSDs of different trajectories. The theoretical slopes are
given as a guide for the eye. The numerically calculated ensemble
average, at the top, fits the given theoretical slope. The same can be
said for the different numerically calculated temporal MSDs, shown
at the bottom part of the plot.

(r2)~nP in terms of the number of steps n. Unlike the pre-
vious case of a simple random walk, the number of steps n
cannot be simply translated into the time ¢. Now the depen-
dence of time ¢ on the number of steps n is a random process
characterized by the probability x,(¢) to perform exactly n
steps up to the time ¢. Therefore

(PO ens = 2 r0X(1) ~ 2 1Px,(1) = (P(1)) 5. (6)
n=0

n=0

The asymptotic form of y,(¢) is given by [16]

t t
Xn(t) = _n_l/a_lLa( Tonl/a/) ’ (7)

a7

where L,() is the one-sided Levy function [1,16].
Let us substitute Eq. (7) into Eq. (6), approximate the sum
by an integral and make a change of variable y=¢'/7n"®

Using the fact that [ ch’7La(y)dy=HFET__";—';‘2 [14] we get

i)aﬁr(l‘Fﬂ) ~ B (8)

2 ~
(r* (1)) ens ( 1+ ap

7o

The two subdiffusive exponents « and S characterizing the
heavy-tailed CTRW and the fractal random walk correspond-
ingly, enter multiplicatively.

We now turn to the temporal average. As mentioned for
CTRWs before, single trajectory temporal averages vary
strongly from one measurement of the MSD to another ex-
hibiting a broad distribution of coefficients [12], as illus-
trated in Fig. 3. We therefore take the ensemble mean of such
temporal averages. Since the two averaging procedures are
interchangeable, we have
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FIG. 4. (Color online) Schematic picture of events for the con-
struction of the forward waiting time distribution, Eq. (11) and the
averaging in Eq. (9).

<<r2(T)>T>enx = <<r2(7-)>ens>T= <<n'B(T)>ens>T~ (9)

The r.h.s. of Eq. (9) can be explicitly written as

T-7
A= f d(nt+ 7) = n(0)Pne. (10)
0

Special care has to be taken when calculating the integrand
in Eq. (10) since the heavy-tailed CTRW process ages; i.e.,
the number of steps performed after some time ¢ explicitly
depends on .

Let us look at time interval [7,z+ 7], and let 7; denote the
time of the first step taken in this interval. The time till the
first step #,,=t;—1 is called the forward waiting time. Figure 4
illustrates these definitions. The distribution of the forward
waiting time differs from the one of further regular steps,
given by (7). Note that we do not know how much time has
passed between the time of the last step #;_; before the ob-
servation started and the beginning of observation f. From
the first step on, the usual connection between the elapsed
time t'=7—t,, and the mean number of steps holds. Thus the
correct form of the desired ensemble average is expressed by
averaging (n?(t')) of the ordinary renewal process over the
forward waiting times [17],

<(I’l([+ T) - n(t))ﬁ>ens = f <nﬁ(7-_ [w)>ens¢l(tw|t)dIW'
0
(11)

The distribution of the forward waiting time ¢, is known

[17],

sin(ra)  t*
it ) =————-——, (12)
T t(t+1,)
which in the long time limit #,,/r<<1 is
sin(ma) ﬁ
t

lﬁl(tw|t) -~ (13)

a
w

Performing the average in Eq. (11), by substituting Egs. (8)
and (13) we get

<(n(t + T) - n(t))ﬁ>ens
F(] +B) Sin(wa)?[’r(T_ ZW)aﬁdtw- (14)
tO 0 tw

- (a+aB) =

The integral in Eq. (14) equals to 7 ~***f'(1+ap)
XI'(1-a)/T'(2— a+apB). Thus,
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((n(t+7) = n(0))P)ops = C - 77 P70, (15)

with C=[I'(1+B)I'(1-a)/T'(2—a+ap)]sin(wa)/ w75P. Per-
forming temporal integration in Eq. (10) we now get

(P~ (A uhr= T8 (16)

This result has to be contrasted with the ensemble MSD as
given by Eq. (8). The exponent of the temporal MSD is no
longer a product of the corresponding exponents of the single
processes. Moreover, the prefactor, giving the corresponding
generalized diffusion coefficient, depends explicitly on the
length of trajectory which can be tested experimentally for
different lengths of trajectories. Performing an ensemble av-
erage only cannot unravel possible coexistence of ergodic
and nonergodic underlying processes.

Numerical results support our analytical derivations. We
simulated a CTRW with a=0.3 on both a percolation cluster
at the critical threshold (8=0.697), and on a Sierpinski gas-
ket embedded in two dimensions (8=0.861). For the Sier-
pinski gasket, the theoretical ensemble exponent is «af3
=0.258. We simulated 5-10* walkers over 10* time steps,
resulting in an exponent 0.251. The theoretical temporal ex-
ponent, following Eq. (16), is 1 —a+aB=0.958. The tempo-
ral MSD was calculated for 200 trajectories, while the time
exponent was taken from the linear fit to the log-log plot of
the MSD vs time. Only trajectories with good linear fits were
taken into consideration (with R*>>0.999). An average was
taken over the exponents of the remaining 121 trajectories,
resulting in 0.949 = 0.038. The theoretical exponent for the
ensemble MSD on the percolation cluster is 0.209. Simula-
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tions of 10° random walkers resulted in an exponent of
0.212. The theoretical temporal exponent is 0.909. The simu-
lations here lead to the exponent 0.924 *0.060. The en-
semble and temporal MSDs for the percolation cluster are
plotted in Fig. 3. Note the spread in values of the diffusion
coefficient in temporal average for different trajectories.

Taking «—0 in Eq. (16) leads to an almost linear time
dependence of the temporal MSD of the subordinated pro-
cess independent of the underlying fractal structure. On the
other hand a=<1 will lead to a subdiffusive exponent domi-
nated by the fractal nature. Thus, we have a process that
recovers temporal exponents of the MSD close to the fractal
ones, yet characterized by ergodicity breaking.

The results in this Rapid Communication may be gener-
alized to the subordination of any two processes, as long as
one is ergodic, i.e., fractional Brownian motion, and the
other not.

Based on the processes discussed above we note that care
should be taken when describing ergodic processes by using
time fractional derivatives [1,18,20]. Given the success of
the fractional Fokker-Planck equation (FFPE), derived from
heavy-tailed CTRW [1], in modeling subdiffusive behavior,
attempts have been made to use it to describe the subdiffu-
sion of a random walk on a fractal structure [19]. One should
note that FFPE is intrinsically nonergodic. It cannot describe
processes characterized by ergodicity even if subdiffusive.
Random walks on fractal structures are not hindered due to
temporal constraints, but rather due to geometric constraints
and are therefore ergodic. The application of FFPE to the
fractal case or any other ergodic process is therefore errone-
ous.
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